Microsoft Screen Codec
Also known as Windows Media Screen Codec.
- FourCCs: MSS1, MSS2, MSA1
- Samples:
MSA1 is created by Live Meeting 2007
Some details about format
Both MSS1 and MSS2 are quite close (thus are decoded with single decoder). They employ arithmetic coding - real one, with probability coding. This coding is used with several adaptive models, which look a bit like PPM.
MSS1 details
MSS1 (aka Windows Media Screen V7 codec) compresses only palettised images.
Extradata format
(for some reason, data in .wmv is stored in big-endian order)
4- 7 header length 8-11 major version (1 for MSS1, 2 for MSS2) 12-15 minor version 16-19 display width 20-23 display height 24-27 coded width 28-31 coded height 32-35 frames per second (float) 36-39 bitrate 40-43 max lead time (float) 44-47 max lag time (float) 48-51 max seek time (float) 52-55 nFreeColors 56-823 palette (256 RGB triplets)
Only for MSS2:
824-827 threadingSplit (domain: -1, 0, 1..codedH) 828-831 numSymbolsEscapeModel (domain: 0..256)
Both width and height must be in the range 1..4096.
Frame format
Codec uses arithmetic decoders for all operations and adaptive models. All code for them is suspiciously similar to the one in | 1987 paper by Witten, Neal and Cleary.
Codec uses delta compression and can change top palette entries with every intra frame:
is_inter = coder->decode_bit(); if (!is_inter) { if (nFreeColors) { num_entries = coder->decode_number(nFreeColors + 1); for (i = 0; i < num_entries; i++) { pal[(256 - nFreeColors) + i].R = coder->decode_bits(8); pal[(256 - nFreeColors) + i].G = coder->decode_bits(8); pal[(256 - nFreeColors) + i].B = coder->decode_bits(8); } } recursive_decode_intra(0, 0, width, height); } else { recursive_decode_inter(0, 0, width, height); }
Frame coding is done by recursively partitioning picture horizontally or vertically and coding partitions in some way:
recursive_decode_intra(x, y, width, height) { mode = coder->decode_model(split_mode_model); switch (mode) { case 0: pivot = decode_pivot(height); recursive_decode_intra(x, y, width, pivot); recursive_decode_intra(x, y + pivot, width, height - pivot); break; case 1: pivot = decode_pivot(width); recursive_decode_intra(x, y, pivot, height); recursive_decode_intra(x + pivot, y, width - pivot, height break; case 2: mode = coder->decode_model(intra_decode_model); if (!mode) { pix = decode_pixel(); fill_rect(x, y, width, height, pixel); } else { decode_area(x, y, width, height); } break; } } recursive_decode_inter(x, y, width, height) { mode = coder->decode_model(split_mode_model); switch (mode) { case 0: pivot = decode_pivot(height); recursive_decode_inter(x, y, width, pivot); recursive_decode_inter(x, y + pivot, width, height - pivot); break; case 1: pivot = decode_pivot(width); recursive_decode_inter(x, y, pivot, height); recursive_decode_inter(x + pivot, y, width - pivot, height break; case 2: mode = coder->decode_model(inter_decode_model); if (!mode) { pix = decode_pixel(); // same meaning as mask values, see below // for MSS2, pix == 4 means a motion compensated rectangle if (pix != 0xFF) { copy_rect(x, y, width, height, pixel); } else { mode = coder->decode_model(intra_decode_model); if (!mode) { pix = decode_pixel(); fill_rect(x, y, width, height, pixel); } else { decode_area(x, y, width, height); } } } else { // this decoded change mask first and then // checks - if mask value is 0xFF then decode pixel // otherwise copy if from the previous frame mask = decode_area(x, y, width, height); decode_area_masked(x, y, width, height); } break; } }
Mask values:
Type | Value in MSS1 | Value in MSS2 |
---|---|---|
copy from same location | 0x80 | 0x02 |
copy motion compensated | N/A | 0x04 |
decode new | 0xFF | 0x01 |
In decode_area_masked(), decode new pixels as described in "Context modeller" even if the neighboring pixels were copied.
other decoding routines
Decoding pivot point:
decode_pivot(ref_value) { edge = coder->decode_model(edge_model); coord = coder->decode_model(pivot_model) + 1; if (coord > 2) coord = coder->decode_number((ref_value + 1) / 2 - 2) + 3; if (edge) return ref_value - coord; else return coord; }
Decoding pixels is not that trivial. Codec uses neighbour pixels (left, top-left, top, top-right) to form a cache which is used along with cached move-to-front queue and several models to restore pixel.
Models
Models are reinitialised at every intraframe. Initially all symbols have weigth = 1. With every update weight is increased by one and when they're too large they get rescaled.
Rescaling weights is performed when total cumulative probability is bigger than threshold, which can be static or adaptive.
Static threshold is calculated as num_symbols * symbol_threshold
, adaptive one is recalculated every time as
min(0x3FFF, ((2 * weights[num_symbols] - 1) / 2 + 4 * cumulative_probability[0]) / (2 * weights[num_symbols] - 1))
.
Scaling weights is simply weight' = (weight + 1) >> 1
.
Main models:
Name | Purpose | Number of symbols | Threshold per symbol |
---|---|---|---|
intra_decode_model | region decoding mode for intra (solid fill or not) | 2 | adaptive |
inter_decode_model | region decoding mode for inter (full region decoder or masked) | 2 | adaptive |
split_mode_model | region split mode (horizontal/vertical/none) | 3 | 50 |
edge_model | signals from which edge pivot point is decoded | 2 | 50 |
pivot_model | rough coordinates for pivot point (1, 2, escape) | 3 | 15 |
Context modeller
Context modeller is used for modelling pixel context by using its neighbours and caching last decoded values. There are two context modellers used by decoder — one for decoding picture data (in both kinds of frames), another one is used solely for decoding mask in interframes.
Modeller components (values in {brackets} are for MSS2):
- last decoded pixels cache (8 for picture data, 2 {3} for mask), initially filled with 0, 1, 2... and reset to that every intraframe
- primary model for decoding pixel (
(cache_size + 1)
symbols,15
symbol threshold) - escape model for decoding pixel value not in cache (
256
{numSymbolsEscapeModel
} symbols,50
symbol threshold) - secondary models for context-modelled pixels, four layers of models for different combinations of non-equal neighbours:
- first layer - 1x4 models (
2
symbols, adaptive symbol threshold) - second layer - 7x4 models (
3
symbols,15
symbol threshold) - third layer - 6x4 models (
4
symbols,15
symbol threshold) - fourth layer - 1x4 models (
5
symbols,15
symbol threshold)
- first layer - 1x4 models (
Decoding top left pixel (for it no neighbourhood is provided):
val = coder->decode_model(modeller->primary_model); if (val < modeller->cache_size) { pix = modeller->cache[pix]; if pix is found in the provided neighbourhood, insert it to the first position in the cache (it doesn't matter if it's already in the cache) else move it to the first position shifting other values by one } else { pix = coder->decode_model(modeller->escape_model); if pix is found in cache, move it to the first position shifting other values by one else just insert it at the first position in cache }
Decoding other pixels:
get neighbourhood (left, top, top-right and top-left pixels) select secondary model depending on neighbourhood if decoded value is less than number of neighbours, pick corresponding neighbour else decode pixel like top left one but provide neighbourhood for the reference this time
Determine neighborhood as:
If top pixel isn't available (first row): top = top-right = top-left = left (left is available, as it was decoded above) If right pixel isn't available (last column): top-right = top If left pixel isn't available (first column): left = top-left = top If neither right nor left are available (single column): top-right = top-left = left = top note: pixels outside the current area aren't considered available
Determine secondary model as:
layer = number of different neighborhoods (1 if all equal, 4 if all different, 2 if ABBB or AABB or ABBA or any other such combination, 3 if ABCC or ABBC or ABCA or any other such combination) sublayer = identify which neighborhoods are equal to each other. For example: if layer == 1: # all equal sublayer = 0 if layer == 2: # 2-2 or 3-1 if top == topLeft: if topRight == topLeft: sublayer = 3 elsif left == topLeft: sublayer = 2 else: sublayer = 4 elsif topRight == topLeft: if left == topLeft: sublayer = 1 else: sublayer = 5 else if left == topLeft: sublayer = 6 else: sublayer = 0 if layer == 3: # 2-1-1 if top == topLeft: sublayer = 0 elsif topRight == topLeft: sublayer = 1 elsif left == topLeft: sublayer = 2 elsif topRight == top: sublayer = 3 elsif left == top: sublayer = 4 else sublayer = 5 if layer == 4: # all different sublayer = 0 subsublayer = 0 if left-left pixel is available (column >= 2) and its value is equal to the left pixel: subsublayer += 1 if top-top pixel is available (row >= 2) and its value is equal to the top pixel: subsublayer += 2
Last decoded pixels cache use:
This cache internally has 4 more entries (12 total for picture data, 6 {7} for mask). The extra entries are to skip neighboring colors which we already know aren't the ones we're looking for.
Example:
Get neiborhood pixels, in this order: topLeft = 140, top = 134, topRight = 140, left = 136 Remove duplicates: [140, 134, 136] We have 3 unique colors, therefore we use the third layer in the secondary model. Since topRight == topLeft, we use sublayer 1. The subsublayer doesn't mater for the sake of this example.
Now we fetch a value x using the corresponding secondary model:
if x == 0, output 140
if x == 1, output 134
if x == 2, output 136
if x == 3, the secondary model can't code the color. Fall back to the primary model to try and decode it from the cache.
Assume the cache contents are [25, 140, 136, 134, 50, 23, ...
If the primary model returned 0, output 25
If it returned 1, since we know the color isn't 134, 136, or 140, output 50
If it returned 2, output 23, and so on, until 8 which means the color isn't in the cache either and we have to fall back to the escape model. In this example, the last cache entry was unreachable. For the top-left pixel, there are zero neighbors and the last 4 entries are unreachable.
MSS2 (Windows Media Video 9 Screen codec) details
In MSS2, the frame header, RLE modes, palette updates, motion vector coding and WMV9 data are not arithmetic coded, whereas the rectangle info data and paletted recursive subdivision modes are. Each block is byte-aligned and consumes a integral number of bytes. The coders have to be re-initialized between blocks, even if they are of the same type.
alignByteStream() { < Align to byte boundary discarding any partially read bytes. When using VLC decoding, use get_bits_count() + 7 >> 3; to determine the number of consumed bytes. For the AC portions, use ac2_get_consumed_byes(); > }
RLE555Decode(x, y, w, h) { //outputs RGB555 if (!isIntra) { x = get_bits(12); w = x - get_bits(12) + 1; y = y + get_bits(12); h = y - get_bits(12) + 1; } for each pixel in the (x, y, w, h) rectangle: read a byte, and switch: 0..127, 134..255: read another byte b and put the color (byte<<8 && b) #note that if the byte was >133, this will generate colors >32767 128: copy from prev line 129: copy from prev frame (leave unchanged) 130..133: r = 0 repeat (value-130) times: r = (r << 8) + (read another byte) r += 1 repeat the previous decoded symbol r times #the previous symbol can be a color or a copy instruction }
RLEDecode(x, y, w, h) { if (!isIntra) { x = get_bits(12); y = get_bits(12); w = get_bits(12) + 1; h = get_bits(12) + 1; } // This mode uses a single tree of VLC codes. // It is built using the code lengths, which are read as follows: usedCodes = 0 currentCodeLength = 1 loop: remainingCodes = (1 << currentCodeLength) - usedCodes codesOfThisLength = get_bits(ceil_log2(remainingCodes + 1)) if codesOfThisLength == remainingCodes: we're done, all of the remainign codes have the current length otherwise, for each codesOfThisLength: x = get 8 bits if x < 190: addcode(get_bits1() + (x << 1) - 190, currentCodeLength) if x < 204 - isIntra: addcode(x, currentCodeLength) #if x >= 204: addcode(x + 14 - isIntra, currentCodeLength) usedCodes = (usedCodes + codesOfThisLength) << 1 currentCodeLength++ // main decoding loop for each pixel in the (x, y, w, h) rectangle: read an VLC code using the tree generated above, and switch: 0-255: put that color 256-267: q = value - 256 if q == 11: q = get_bits(4) + 10 if !q: r=1 else: r = get_bits(q) + 1 while q--: r += 1 << q repeat the previous symbol r times 268: copy from prev line 269: copy from prev frame (leave unchanged) alignByteStream(); }
SubDivDecode(contextSet, x, y, w, h) { < load the corresponding contextSet, with includes all the 5 main models plus both color contexts > if (isIntra) { reset_contextSet(); recursive_decode_intra(x, y, w, h); // same as MSS1, with the differences outlined above } else recursive_decode_inter(x, y, w, h); // same as MSS1, with the differences outlined above alignByteStream(); }
The WMV9 rectangle coordinates are read like a tree, but we're only interested on the list that will be placed on root_rect.children. There shouldn't be any grandchildren. levelIsPal determines whether the root rect is a paletted subdivision node and its children are WMV9 nodes or viceversa. In practice it should always be 1. There's a limit of 20 WMV9 rectangles per frame.
WMV9RectRecursive(rect, offset, depth, levelIsPal, flagsRead) { int n = 0; while (ac2_get_bit()) { if (!n) new_rect.x = ac2_get_number(rect.w); else new_rect.x = ac2_get_number(rect.h - rect.children[n-1].x) + rect.children[n-1].x; new_rect.y = ac2_get_number(rect.h); new_rect.w = ac2_get_number(rect.w - new_rect.x); new_rect.h = ac2_get_number(rect.h - new_rect.y); new_rect.children = []; rect.children += new_rect; // append to list n++; } if (!levelIsPAL && !flagsRead) { if (offset == 0) { if (maskWMV9 = ac2_get_bit()) maskWMV9color = ac2_get_number(256); } WMV9RectIsCoded[offset] = ac2_get_number(2); flagsRead = 1; } n = 0; foreach crect in rect.children { WMV9RectRecursive(crect, n, depth + 1, !levelIsPal, flagsRead); n++; } }
WMV9RectInfoDecode() { topLevelIsPal = ac2_get_bit(); root_rect.x = 0; root_rect.y = 0; root_rect.w = codedWidth; root_rect.h = Height; root_rect.children = []; WMV9RectRecursive(root_rect, 0, 0, topLevelIsPal, 0); alignByteStream(); }
decodeWMV9Rect(rect) { < Initialize a WMV9 decoder. The sequence header, which is usually stored in the extradata for WM9 files, is implicit here, as follows: codec tag = MKTAG('W', 'M', 'V', '9') codedWidth/Height = rect.w/h (might be odd, round up if necessary) profile = PROFILE_MAIN res_y411 = 0 res_sprite = 0 frmrtq_postproc = 7 bitrtq_postproc = 31 s.loop_filter = 1 res_x8 = 0 multires = 0 res_fasttx = 1 fastuvmc = 0 extended_mv = 0 dquant = 1 vstransform = 1 res_transtab = 0 overlap = 0 s.resync_marker = 0 rangered = 0 s.max_b_frames = 0 quantizer_mode = 0 finterpflag = 0 res_rtm_flag = 1 Then read the frame header (ff_vc1_parse_frame_header()) and frame data (vc1_decode_i_blocks()). If maskWMV9 is set, blit the resulting picture only over the pixels that had maskWMV9color. > }
Main frame decoding
Header
isIntra = get_bits1(); if (isIntra) skip_bits(7); hasWMV9 = getBits1(); hasMotionVector = isIntra ? 0 : getBits1(); isRLE = getBits1(); isRLE555 = isRLE && getBits1(); if (threadingSplit > 0) splitPosition = threadingSplit else if (threadingSplit == -1) { if (getBits1()) { if (getBits1()) { if (getBits1()) splitPosition = get_bits(16); else splitPosition = get_bits(12); } else splitPosition = get_bits(8) << 4; splitPosition = readSplit } else { splitPosition = isIntra ? codedHeight / 2 : oldSplitPosition; } oldSplitPosition = splitPosition; } if (threadingSplit) { rectangle1 = {0, 0, codedWidth, splitPosition}; rectangle2 = {0, splitPosition, codedWidth, codedHeight - splitPosition}; } else { rectangle1 = {0, 0, codedWidth, codedHeight}; } alignByteStream();
Frame
if (isRLE555) { RLE555Decode(rectangle1); if (threadingSplit) RLE555Decode(rectangle2); return; } if (hasWMV9) WMV9RectInfoDecode(); if (isIntra) getPalette(); /* similar to MSS1, but here both the number of changed colors and the colors themselves are directly read as bytes */ else { if (hasMotionVector) { mvX = get_bits(16) - codedWidth; mvY = get_bits(16) - codedHeight; } else { mvX = mvY = 0; } } if (isRLE) { RLEDecode(rectangle1); if (threadingSplit) RLEDecode(rectangle2); } else { SubDivDecode(contextSet1, rectangle1); if (threadingSplit) SubDivDecode(contextSet2, rectangle2); } if (hasWMV9) { int i = 0; foreach rect in root_rect.children { if (WMV9RectIsCoded[i]) { WMV9codedFrameSize = get_le24(); decodeWMV9Rect(rect); } else { fillGrey(rect); // fill with 128,128,128 } i++; } }
V2 Arithmetic Coder
void ac2_init(AC2 *c, GetByteContext *gb) { c->low = 0; c->high = 0xFFFFFF; c->value = bytestream2_get_be24(gb); c->gb = gb; }
void ac2_renorm(AC2 *c) { while ((c->high >> 15) - (c->low >> 15) < 2) { if ((c->low ^ c->high) & 0x10000) { c->high ^= 0x8000; c->value ^= 0x8000; c->low ^= 0x8000; } c->high = c->high << 8 & 0xFFFFFF | 0xFF; c->value = c->value << 8 & 0xFFFFFF | bytestream2_get_byte(gb); c->low = c->low << 8 & 0xFFFFFF; } }
int ac2_get_bit(AC2 *c); // Identical to its MSS1 counterpart, except it renormalizes using ac2_renorm()
/* decodes a number dividing the range into two linear pieces: one whose values have probability 1 and another whose values have probability 2, so that it maps to n values ( range/2 < n <= range ) */ int ac2_get_scaled_value(int value, int n, int range) { split = (n << 1) - range; if (value > split) return split + (value - split >> 1); else return value; }
/* rescales the interval considering the piecewise linear division */ void ac2_rescale_interval(AC2 *c, int range, int low, int high, int n) { split = (n << 1) - range; if (high > split) c->high = split + (high - split << 1); else c->high = high; c->high += c->low; if (low > split) c->low += split + (low - split << 1); else c->low += low; }
int ac2_get_number(AC2 *c, int n) { int range = c->high - c->low + 1; int scale = av_log2(range) - av_log2(n); int val; if ( n << scale > range ) scale--; n <<= scale; val = ac2_get_scaled_value(c->value - c->low, n, range) >> scale; ac2_rescale_interval(c, range, val << scale, (val + 1) << scale, n); ac2_renorm(c); return val; }
int ac2_get_prob(AC2 *c, int *probs) { int range = c->high - c->low + 1, n = *probs; int scale = av_log2(range) - av_log2(n); int i = 0, val; if ( n << scale > range ) scale--; n <<= scale; val = ac2_get_scaled_value(c->value - c->low, n, range) >> scale; while (probs[++i] > val) ; ac2_rescale_interval(c, range, probs[i] << scale, probs[i-1] << scale, n); return i; }
int ac2_get_model_sym(AC2 *c, Model *m); // Identical to its MSS1 counterpart, except it gets the symbol index // using ac2_get_prob() and renormalizes using ac2_renorm()
int ac2_get_consumed_byes(AC2 *c) { int diff = (c->high >> 16) - (c->low >> 16); int bp = bytestream2_tell(c->gb) - 3 << 3; int bits = 1; while (!(diff & 0x80)) { bits++; diff <<= 1; } return (bits + bp + 7 >> 3) + ((c->low >> 16) + 1 == c->high >> 16); }
MSA1 Details
Internally it calls itself MS ATC Screen codec and MSS3.
The codec has several coding possibilities: fill area, decode area with prediction (somewhat like MSS1), decode with Haar transform, decode with 8x8 DCT.
Frame header
0- 3 frame type (0x301 - intra, 0x300 - inter) 4 should be always 1? 5 should be always 0 6- 9 should be 0x380 10-11 probably x offset for the frame 12-13 probably y offset for the frame 14-15 probably frame width 16-17 probably frame height 18-21 ignored 22 quality (used in image decoders, 0-100) 23-26 seems to be always 1
The rest is range-coded data.
Codec organisation
MSA1 codes YUV 4:2:0 planes in 16x16 macroblocks.
for (mb_y = 0; mb_y < mb_height; y++) { for (mb_x = 0; mb_x < mb_width; mb_x++) { btype = block_info[0]->get_type(acoder); coders[0][btype]->decode_block(acoder, Y, mb_x, mb_y); btype = block_info[1]->get_type(acoder); coders[1][btype]->decode_block(acoder, U, mb_x, mb_y); btype = block_info[2]->get_type(acoder); coders[2][btype]->decode_block(acoder, V, mb_x, mb_y); } }
Possible coders (starting from zero):
- solid fill (aka "smooth block")
- predicted image (aka "text block")
- DCT-coded block (aka "image block")
- Haar wavelet block (aka "hybrid block")
- skipped block
Range coder
Normalisation:
for (;;) { c->range <<= 8; c->low <<= 8; if (c->src < c->src_end) { c->low |= *c->src++; } else if (!c->low) { return error; } if (c->range >= 0x01000000) return 0; }
Reading bits:
c->range >>= nbits; val = c->low / c->range; c->low -= c->range * val; if (c->range < RAC_BOTTOM) rac_normalise(c); return val;
Obtaining symbol from model:
prob = 0; prob2 = c->range; c->range >>= MODEL_SCALE; val = 0; end = model->num_syms >> 1; end2 = model->num_syms; do { helper = model->freqs[end] * c->range; if (helper <= c->low) { val = end; prob = helper; } else { end2 = end; prob2 = helper; } end = (end2 + val) >> 1; } while (end != val); c->low -= prob; c->range = prob2 - prob; if (c->range < 0x01000000) rac_normalise(c); model_update(model, val); return val;
Model
Models used by coders:
Coder | Designation | Number | Number of symbols |
---|---|---|---|
Block type | block type | 5 | 5 |
Fill block | number of bits for fill value | 1 | 12 |
Image block | cache size | 1 | 3 |
Image block | cache entry | 1 | 256 |
Image block | escape value | 1 | 256 |
Image block | cache value | 125 | 5 |
DCT block | coded AC element | 1 | 256 |
DCT block | DC length | 1 | 12 |
Haar block | some coefficients' length | 1 | 12 |
Haar block | other coefficients | 1 | 256 |
The main difference from plain models (like in MSS1) is that they update frequencies only after some iterations and the frequencies are not simple cumulative weights:
void model_update(Model *m, int val) { m->weights[val]++; m->times_till_update--; if (m->times_till_update) return; m->total_weight += m->update_value; if (m->total_weight > ...) // rescale weights scale = 0x80000000u / m->total_weight; for (i = 0; i < m->num_symbols; i++) m->freq[i] = m->weight[i] * scale >> (31 - m->scale); m->update_value = (m->update_value * 5) >> 2; if (m->update_value > 8 * m->num_symbols + 48) m->update_value = 8 * m->num_symbols + 48; m->times_till_update = m->update_value; }
There is also a special case for sign model - it has only two values and use scale=13
instead of 15
for other models.
Block type decoding
Block type coder uses one of five models to decode block type, the number of model to use is the previously decoded block type (or 4 for the first block).
Solid fill
This coder decodes difference from the last fill value, uses it to restore new fill value and fill the region. The difference is coded exactly like DC coefficient in DCT block.
Predicted image
This coder decodes cache index value with one of 125 cache models (index = top_left_cache_val * 25 + top_cache_val * 5 + left_cache_val
). If decoded cache value is 5 then decode a pixel from model, otherwise retrieve it from cache position.
DCT-coded image
DC coefficient coding:
code_len = get_model(acoder, dc_model); if (code_len > 0) { sign = get_bit(acoder); val = (1 << (code_len - 1)) + get_bits(acoder, code_len - 1); if (sign) val = -val; } else { val = 0; }
Then decoded value is added to the predicted DC value.
The rest of coefficients (sign is coded with special binary model):
val = decode_model(acoder, coef_model); skip = (val == 0xF0) ? 16 : (val >> 4); coef = val & 0xF; if (!coef && val != 0xF0) break; // last coded coefficient sign = get_binary_model(acoder, sign_model); coef = (1 << (coef - 1)) + get_bits(acoder, coef - 1); if (sign) coef = -coef;
Scan order is normal zigzag. There are two quantisation matrices (for luma and for chroma).
if (quality >= 50) q = 200 - 2 * quality; else q = 5000 / quality; for (i = 0; i < 64; i++) quant[i] = 65536 / MAX((qmatrix[zigzag[i]] * q + 50) / 100, 1);
Wavelet-coded image
This coder codes quantised coefficients and restores them as:
A1 a2 ... B1 b2 ... ((A1 - B1) + (C1 - D1)) ((A1 + B1) - (C1 + D1)) ,,, ... .... -> ((A1 - B1) + (C1 - D1)) ((A1 + B1) + (C1 + D1)) ... C1 c2 ... D1 d2 ... .... .... ... .... .... ....
Coefficients are coded as DC coefficients or as model.
Quantiser is calculated as 17 - 7 * quality / 50
.