Difference between revisions of "YCoCg"

From MultimediaWiki
Jump to navigation Jump to search
Line 4: Line 4:
     * C<sub>o</sub> = "orange chrominance"
     * C<sub>o</sub> = "orange chrominance"
     * C<sub>g</sub> = "green chrominance"
     * C<sub>g</sub> = "green chrominance"
In contrast to [[YCbCr]] this doesn't represent the human kind of viewing.


This colorspace is invented to use similar encoding techniques as for [[YCbCr|YC<sub>b</sub>C<sub>r</sub>]] but with frames in [[RGB]] colorspace.
This colorspace is invented to use similar encoding techniques as for [[YCbCr|YC<sub>b</sub>C<sub>r</sub>]] but with frames in [[RGB]] colorspace.
Line 30: Line 32:
  *    B = t  - (Co >> 1)
  *    B = t  - (Co >> 1)
  *    R = Co + B
  *    R = Co + B
[[Category:Compression Theory]]

Revision as of 03:23, 16 March 2009

Some modern video codecs (e.g. dirac) support the YCoCg colorspace. More correctly written this is YCoCg, with the 'o' and 'g' characters as subscripts. This is what the components represent:

   * Y = pseudo luminance, or intensity
   * Co = "orange chrominance"
   * Cg = "green chrominance"

In contrast to YCbCr this doesn't represent the human kind of viewing.

This colorspace is invented to use similar encoding techniques as for YCbCr but with frames in RGB colorspace. It is possible to transform lossless from RGB to YCoCg when two more bits than used for RGB are available for the YCoCg represantation. This way it is possible to losslessly transform a 30-bit RGB (10 bits for each color) frame into 32 bits in YCoCg and back.

Sometimes this colorspace is called YCoCg-R because of the lossless reversable transformation. The original and outdated algorithm could not restore the RGB value exactly but used only as much bits as the RGB version. The latter algorithm isn't used anymore.

Like with YCbCr it is also possible to use different sized planes for each component. Thus, every pixel in an image of a YCoCg encoded frame is associated with one Y sample, but possibly groups of pixels share Co and Cg samples.

So this encodings are possible for instance

   * YCoCg 4:4:4
   * YCoCg 4:2:2
   * ...

The algorithm is described in this paper: YCoCg(-R) Color Space Conversion on the GPU.

From RGB to YCoCG:

*   Co = R - B
*    t = B + (Co >> 1)
*   Cg = G - t
*    Y = t + (Cg >> 1)

and back from YCoCg to RGB:

*    t = Y  - (Cg >> 1)
*    G = Cg + t
*    B = t  - (Co >> 1)
*    R = Co + B