Difference between revisions of "Discrete Fourier transform"

From MultimediaWiki
Jump to navigation Jump to search
 
m
 
Line 1: Line 1:
'''Discrete Fourier transform''' (DFT), sometimes called the finite Fourier transform, is a [[Fourier transform]] widely employed in signal processing and related fields to analyze the frequencies contained in a sampled signal, to solve partial differential equations, and to perform other operations such as convolutions. The DFT can be computed efficiently in practice using a [[fast Fourier transform]] (FFT) algorithm.
'''Discrete Fourier transform''' (DFT), sometimes called the finite Fourier transform, is a [[Fourier transform]] widely employed in signal processing and related fields to analyze the frequencies contained in a sampled signal, to solve partial differential equations, and to perform other operations such as convolutions. The DFT can be computed efficiently in practice using a [[fast Fourier transform]] (FFT) algorithm.
[[Category:Compression Theory]]

Latest revision as of 22:57, 1 February 2007

Discrete Fourier transform (DFT), sometimes called the finite Fourier transform, is a Fourier transform widely employed in signal processing and related fields to analyze the frequencies contained in a sampled signal, to solve partial differential equations, and to perform other operations such as convolutions. The DFT can be computed efficiently in practice using a fast Fourier transform (FFT) algorithm.